Inequalities (2) and (3) imply the required result.

In order to make this solution self-contained, the definition of majorizing and the Majorizing Inequality are explained here.

The explanations are excerpted from a nice short article by Murray S. Klamkin (1921-2004) who was one of the greatest problems composer.

M. S. Klamkin, On a "Problem of the Month", Crux Mathematicorum, Volume 28, Number 2, page 86, 2002.

"If A and B are vectors $(a_1, a_2, ..., a_n)$, $(b_1, b_2, ..., b_n)$ where $a_1 \ge a_2 \ge ... \ge a_n$, $b_1 \ge b_2 \ge ... \ge b_n$, and $a_1 \ge b_1$, $a_1 + a_2 \ge b_1 + b_2$,

 $a_1 + a_2 + \cdots + a_{n-1} \ge b_1 + b_2 + \cdots + b_{n-1}$, $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$, we say that A majorizes B and write it as A > B. Then, if F is a convex function,

$$F(a_1) + F(a_2) + \dots + F(a_n) \ge F(b_1) + F(b_2) + \dots + F(b_n)$$
."

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical Community College, Jamestown, NC; Soumava Chakraborty, Kolkata, India; Pedro Acosta De Leon, Massachusetts Institute of Technology Cambridge, MA; Bruno Salgueiro Fanego, Viveiro, Spain. Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Athens, Greece, and the proposers.

5473: Proposed by José Luis Díaz-Barrero, Barcelona Tech, Barcelona, Spain

Let x_1, \dots, x_n be positive real numbers. Prove that for $n \geq 2$, the following inequality holds:

$$\left(\sum_{k=1}^{n} \frac{\sin x_k}{\left((n-1)x_k + x_{k+1}\right)^{1/2}}\right) \left(\sum_{k=1}^{n} \frac{\cos x_k}{\left((n-1)x_k + x_{k+1}\right)^{1/2}}\right) \le \frac{1}{2} \sum_{k=1}^{n} \frac{1}{x_k}.$$

(Here the subscripts are taken modulo n.)

Solution 1 by Moti Levy, Rehovot, Israel

The following three facts will be used in this solution:

1)

$$\left(\sum_{k=1}^{n} a_k \sin x_k\right) \left(\sum_{k=1}^{n} a_k \cos x_k\right) \le \frac{1}{2} \left(\sum_{k=1}^{n} a_k\right)^2. \tag{4}$$

This can be shown by expanding the left hand side and using the facts that $\sin x_k \cos x_k \le \frac{1}{2}$ and $\sin x_j \cos x_k + \cos x_j \sin x_k \le 1$.

$$\left(\sum_{k=1}^{n} \frac{\sqrt{a_k}}{n}\right)^2 \le \sum_{k=1}^{n} \frac{a_k}{n}.$$
 (5)

This is implied from $M_{\frac{1}{2}} \leq M_1$ where M_k are power means.

3)

$$\frac{1}{px+qy} \le \frac{1}{2} \left(\frac{1}{x} + \frac{1}{y} \right), \quad p, q \ge 0 \quad and \quad p+q = 1.$$
 (6)

This can be shown by Jensen's inequality.

Now let

$$a_k := \frac{1}{((n-1)x_k + x_{k+1})^{\frac{1}{2}}}.$$

Then

$$LHS := \left(\sum_{k=1}^{n} \frac{\sin x_k}{((n-1)x_k + x_{k+1})^{\frac{1}{2}}}\right) \left(\sum_{k=1}^{n} \frac{\cos x_k}{((n-1)x_k + x_{k+1})^{\frac{1}{2}}}\right)$$
$$= \left(\sum_{k=1}^{n} a_k \sin x_k\right) \left(\sum_{k=1}^{n} a_k \cos x_k\right) \le \frac{1}{2} \left(\sum_{k=1}^{n} a_k\right)^2.$$

By (5),

$$LHS \le \frac{1}{2} \left(\sum_{k=1}^{n} a_k \right)^2 \le \frac{n}{2} \sum_{k=1}^{n} a_k = \frac{n}{2} \sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}}$$
$$= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{\frac{n-1}{n}x_k + \frac{1}{n}x_{k+1}}.$$

Set $p = \frac{n-1}{n}$ and $q = \frac{1}{n}$, then by (6)

$$\frac{1}{2} \sum_{k=1}^{n} \frac{1}{\frac{n-1}{n} x_k + \frac{1}{n} x_{k+1}} \le \frac{1}{4} \sum_{k=1}^{n} \left(\frac{1}{x_k} + \frac{1}{x_{k+1}} \right) = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{x_k}.$$

Solution to 2 by Kee-Wai Lau, Hong Kong, China

Since $2ab \le a^2 + b^2$ for any real numbers a and b, so by the Cauchy-Schwarz inequality, we have

$$2\left(\sum_{k=1}^{n} \frac{\sin x_{k}}{((n-1)x_{k} + x_{k+1})^{1/2}}\right) \left(\sum_{k=1}^{n} \frac{\cos x_{k}}{((n-1)x_{k} + x_{k+1})^{1/2}}\right)$$

$$\leq \left(\sum_{k=1}^{n} \frac{\sin x_{k}}{((n-1)x_{k} + x_{k+1})^{1/2}}\right)^{2} + \left(\sum_{k=1}^{n} \frac{\cos x_{k}}{((n-1)x_{k} + x_{k+1})^{1/2}}\right)^{2}$$

$$\leq \left(n\sum_{k=1}^{n} \frac{\sin^{2} x_{k}}{(n-1)x_{k} + x_{k+1}} + \sum_{k=1}^{n} \frac{\cos^{2} x_{k}}{(n-1)x_{k} + x_{k+1}}\right)$$

$$= n\sum_{k=1}^{n} \frac{1}{(n-1)x_{k} + x_{k+1}}.$$

Applying Jensen's inequality to the convex function $\frac{1}{x}$ for x > 0, we have

$$\frac{n-1}{x_k} + \frac{1}{x_{k+1}} \ge n \left(\frac{1}{\frac{(n-1)x_k + x_{k+1}}{n}} \right) = \frac{n^2}{(n-1)x_k + x_{k+1}}.$$

It follows that
$$n \sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}} \le \frac{1}{n} \left(\sum_{k=1}^{n} \frac{n-1}{x_k} + \sum_{k=1}^{n} \frac{1}{x_{k+1}} \right) = \sum_{k=1}^{n} \frac{1}{x}$$
.

Thus the inequality of the problem holds.

Solution 3 by Arkady Alt, San Jose, CA

By Cauchy Inequality
$$\sum_{k=1}^{n} \frac{\sin x_k}{((n-1)x_k + x_{k+1})^{1/2}} \le \sqrt{\sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}}} \cdot \sqrt{\sum_{k=1}^{n} \sin^2 x_k}$$
 and $\sum_{k=1}^{n} \frac{\cos x_k}{((n-1)x_k + x_{k+1})^{1/2}} \le \sqrt{\sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}}} \cdot \sqrt{\sum_{k=1}^{n} \cos^2 x_k}$.

Also by AM-GM inequality

$$\sqrt{\sum_{k=1}^{n} \sin^2 x_k} \cdot \sqrt{\sum_{k=1}^{n} \cos^2 x_k} \le \frac{1}{2} \left(\sum_{k=1}^{n} \sin^2 x_k + \sum_{k=1}^{n} \cos^2 x_k \right) = \frac{1}{2} \sum_{k=1}^{n} \left(\sin^2 x_k + \cos^2 x_k \right) = \frac{n}{2}.$$

Thus,
$$\left(\sum_{k=1}^{n} \frac{\sin x_k}{((n-1)x_k + x_{k+1})^{1/2}}\right) \left(\sum_{k=1}^{n} \frac{\cos x_k}{((n-1)x_k + x_{k+1})^{1/2}}\right) \le \frac{n}{2} \sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}}$$

and it remains to prove the inequality

$$\frac{n}{2} \sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}} \le \frac{1}{2} \sum_{k=1}^{n} \frac{1}{x_k} \iff \sum_{k=1}^{n} \frac{1}{(n-1)x_k + x_{k+1}} \le \frac{1}{n} \sum_{k=1}^{n} \frac{1}{x_k}.$$

By the Cauchy Inequality

$$((n-1)x_k + x_{k+1})\left(\frac{n-1}{x_k} + \frac{1}{x_{k+1}}\right) \ge n^2 \iff \frac{1}{(n-1)x_k + x_{k+1}} \le \frac{1}{n^2}\left(\frac{n-1}{x_k} + \frac{1}{x_{k+1}}\right)$$
then $\sum_{k=1}^n \frac{1}{(n-1)x_k + x_{k+1}} \le \frac{1}{n^2}\sum_{k=1}^n \left(\frac{n-1}{x_k} + \frac{1}{x_{k+1}}\right) = \frac{1}{n}\sum_{k=1}^n \frac{1}{x_k}$.

Also solved by Ed Gray, Highland Beach, FL; Ioannis D. Sfikas, National and Kapodistrian University of Athens, Athens, Greece; Albert Stadler, Herrliberg, Switzerland, and the proposer.

5474: Proposed by Ovidiu Furdui, Technical University of Cluj-Napoca, Cluj-Napoca, Romania

Let $a, b \in \Re, b \neq 0$. Calculate

$$\lim_{n \to \infty} \begin{pmatrix} 1 - \frac{a}{n^2} & \frac{b}{n} \\ \frac{b}{n} & 1 + \frac{a}{n^2}. \end{pmatrix}^n.$$

Solution 1 by Bruno Salgueiro Fanego, Viveiro, Spain